National Footprint and Biocapacity Accounts 2005:
The underlying calculation method

Mathis Wackernagel, * Chad Monfreda, Dan Moran, *
Paul Wermer, Steve Goldfinger, * Diana Deumling, Michael Murray

May 25, 2005

* Corresponding authors: mathis@footprintnetwork.org, dan@footprintnetwork.org
 steve@footprintnetwork.org

This paper builds on:
SUMMARY

The protection of natural capital, including its ability to renew or regenerate itself, represents a core aspect of sustainability. Hence reliable measures of the supply of, and human demand on, natural capital are indispensable for tracking progress, setting targets and driving policies for sustainability.

This paper presents the current method for measuring this demand at the national level: the National Footprint and Biocapacity Accounts (2005 edition). These accounts, maintained by Global Footprint Network, systematically assess the Ecological Footprint of nations, using over 4000 data points per country and year. After explaining the assumptions and choice of data sources on which the accounts are built, this paper presents how the newest version of these accounts have become more consistent, reliable and detailed by using more comprehensive data sources, calculating and comparing yields more consistently, distinguishing more sharply between primary and secondary production, and using procedures to identify and eliminate potential errors.

As a result, this method can now provide more meaningful comparisons among nations’ final consumption, or their economic production, and help to analyze the Ecological Footprint embodied in trade. With the higher level of detail, the accounts can generate sectoral assessments of an economy and detailed time trends of resource availability and use.

Keywords: Ecological Footprint, Method, Ecological deficit, Overshoot, Natural capital, Biophysical accounts.

I. PURPOSE OF THIS PAPER

This paper presents the latest iteration of an accounting tool to track a nation’s demand on, and supply of, natural capital: the National Ecological Footprint and Biocapacity Accounts (2005) slightly refined as compared to the 2004 edition presented in WWF’s Living Planet Report 2004 (Loh and Wackernagel, 2004). Recognizing the central role of natural capital for sustainability, this paper explains the need for accounts that can comprehensively document human use of natural capital, and how the Ecological Footprint can satisfy this need. It also points out the ability of such accounts to distinguish between the liquidation of natural capital and income (or “interest”) from natural capital.

After providing the conceptual background and identifying the research question underlying the Ecological Footprint accounts, the paper explains recent advances in making the national accounts more consistent, reliable and detailed, and contrasts them to older and different Footprint methods. This includes the identification of the accounts’ primary data sources and the clarification of the assumptions and choice of data sources on which the accounts are built.
II. NATURAL CAPITAL ACCOUNTING

Natural Capital and Weak Sustainability

The benchmark of a sustainable society has been variously defined along ‘strong’ and ‘weak’
criteria. While both aim at securing the best possible future well-being for people, strong
sustainability builds on the assumption that natural capital is irreplaceable and therefore
essential. At a minimum, strong sustainability stands for maintaining natural capital, independent
of the development of human-made forms of capital. In contrast, weak sustainability assumes
that human well-being is better served if the value of all combined assets is preserved, rather
than giving special attention to maintaining natural capital, since technology may be able to
substitute for lost ecological services (Pearce et al., 1989).

Whether a society pursues weak or strong sustainability, both paths need metrics to keep track of
the various forms of capital. Market prices or other monetary valuation methods are unreliable
means of assessing the long-term viability of ecosystems that provide goods and services such as
topsoil creation, climatic stability, biodiversity, fuel, and fodder. Biophysical measures of natural
capital are necessary, given that the uncertainties and limitations of monetary valuations of
ecological services compromise our ability to manage social-ecological systems (Rees and
Wackernagel, 1999).

Broadly defined, natural capital contains all material aspects of the planet people find useful,
minus the value people add to these materials. One way to make this concept more operational is
to narrow natural capital down to its critical elements, or ‘critical natural capital’ (Ekins et al.,
2003). Assessments of the importance of and threats to natural capital can help identify those
critical elements (De Groot et al., 2003). Perhaps the most important and thus most critical aspect
of natural capital is Earth’s ability to provide conditions conducive to life. Conditions to make
carbon-based life possible depend on a wide range of parameters such as level of solar power,
temperature ranges and climate stability, access to certain chemical elements along with the
absence of those toxic to life, sufficient and continuous access to freshwater, to name just a few.
These life-supporting qualities of natural capital are indispensable for maintaining life on this
planet. In other words, they are more critical than other components of natural capital such as
minerals deeply embedded in the Earth crust and used for industrial purposes. We call this part
of natural capital that is essential for life the ‘life-supporting natural capital.’ It is this natural
capital that provides the basic life-support services such as the ability to renew biomass-based
resources and to assimilate waste, which we call the regenerative capacity of the biosphere.

If the goal is to secure high-quality living conditions on this planet in perpetuity, reliable tools
are needed to document to what extent human activities compromise the biosphere’s ability to
regenerate. Measures for tracking the overall supply of, and human demand on, life-supporting
natural capital are tools not only for documenting capacity and overuse of this capital. They are
also useful for policy makers who wish to set targets for sustainability policies or test the
ecological implications of policy choices.
What Ecological Footprint Accounts Measure

The accounts presented in this paper focus on those human activities that either depend on life-supporting services of natural capital or that compromise natural capital’s ability to provide these services. Since both renewal and absorption depend on the health and integrity of ecosystems, regenerative capacity is a reliable proxy for the life-supporting capacity of natural capital. To track human demand on these services, we have developed accounts that measure how much of the biosphere’s regenerative capacity is used by the human economy. These Ecological Footprint accounts document how much of the annual regenerative capacity of the biosphere, expressed in mutually exclusive hectares of biologically productive land or sea area, is required to renew the resource throughput of a defined population in a given year—with the prevailing technology and resource management of that year. For example, renewable resources like timber and crops need space to grow. Non-renewable resources are included in the Footprint insofar as they put a demand on the regenerative capacity of the planet, such as the energy needed to concentrate and process them and to absorb the waste from processing and using them.

This specific research question drives the accounts, which aim to provide transparent, robust and comprehensive results with enough resolution to identify the trends and significance of various human activities. The ability to answer this question also sheds light on how much regenerative capacity exists within a given area compared with the regenerative capacity demanded by the population of that area, and how this has changed over time. Further, it allows researchers to identify what portion of the demand is supplied domestically versus the portion obtained through imports. It also provides a framework to compare the resources embodied in trade flows, compare the resource demand for supplying economic production versus feeding final consumption or, what economists call ‘final demand’, and map to what extent regions are net debtors or creditors of ecological capacity (Sturm et al., 2000). Each of these inquiries can be conducted for each natural capital component captured in the accounts.

Using area as a measure of life-supporting natural capital reflects the fact that many basic ecosystem services are driven by surfaces where photosynthesis takes place. By focusing the measure on biologically productive areas that provide particular functions to people, rather than on the total amount of photosynthesis generated, the measure becomes sensitive to the quality of the biomass generation and its usefulness to the human economy.

By making the accounts work for any human population, they are scalable from the individual to the global level. This paper focuses on national Ecological Footprint accounts that provide detailed documentation of a national economy’s aggregate demand on nature’s services, allowing researchers to investigate the dependence of a country on ecological services, the competition between people’s various uses of nature, and the distribution of resource use and capacity across the planet. Since these static accounts present yearly snapshots of ecological demand and supply, they capture annual changes in resource extraction technologies, production efficiency and ecosystem management.

Complete national Ecological Footprint accounts measure the biologically productive space occupied exclusively to provide all of the resources which a nation’s population consumes and to absorb all of the wastes it generates, using prevailing technology and resource management. The
accounts presented herein are the most complete and detailed ones yet produced, building off of earlier work (Wackernagel 1994, Wackernagel et al 1997, Wackernagel et al 1999, Wackernagel et al 2002a, b).

Recent increases in the availability of national data have prompted the development of more reliable accounts with data resolution an order of magnitude greater than former accounts (Wackernagel et al., 1999). However, it should be kept in mind that despite great improvements in accuracy and resolution over the last 15 years of methodological development, there are still shortcomings of the Ecological Footprint. Perhaps its greatest shortcoming stems from the lack of data availability for some ecological demands, leading to results that most likely underestimate humanity’s full demand on nature.

Section III of this paper documents the methodology of these national Ecological Footprint accounts, and section IV provides more detailed information on the data sources and calculation components.

III. ACCOUNTING METHOD

Ecological Footprinting Techniques: Compound and Component-Based Methods

The first Ecological Footprints were calculated using a component based approach. This has evolved into a more comprehensive and robust approach: compound Footprinting, now used for national Footprint accounting (Simmons et al., 2000).

The component-based approach sums the Ecological Footprint of all relevant components of a population’s resource consumption and waste production. This is done by, first, identifying all of the individual items–goods and services–and amounts thereof, that a given population consumes, and second, assessing the Ecological Footprint of each component using life-cycle data that track the resource requirements of a given product from resource extraction to waste disposal, or ‘cradle to grave’. The overall accuracy of the final result depends on the completeness of the component list as well as on the reliability of the life-cycle assessment (LCA) of each identified component. This approach produces erratic results, given LCAs’ boundary problems, lack of accurate and complete information about products’ life-cycles, problems of double-counting in the case of complex chains of production with many primary products and by-products, and the large amount of detailed knowledge necessary for each analyzed process (Lenzen, 2001).

In addition, there may be significant differences in the resource requirements of similar products, depending on how they are being produced. Of course, the process of detecting all components and analyzing their respective resource demands has heuristic value, judging from the hundreds of student projects replicating this approach worldwide. Scientific robustness and reliability of the component-based Footprinting approach using LCA data, however, may be less due to these limitations.

Using a component method that is calibrated against a compound Ecological Footprints assessment can overcome the weaknesses of the component method. Compound Footprinting,
which underlies the accounts presented in this paper, calculates the Ecological Footprint using aggregate national data. Such aggregate data captures the resource demand without having to know every single end use, and is therefore more complete than data used in the component approach. For instance, to calculate the Footprint of a country associated with paper products, information about the total amount consumed is typically available and sufficient for the task. In contrast to the component method, there is no need to know which portions of the overall paper consumption were used for which purposes, such as office use, commercial printing, etc. Typically, these end-use categorizations are poorly documented in statistical data collections used to support the component approach.

Numerous studies have based organizational, municipal and regional assessments on national Ecological Footprints by calibrating component-based estimates on past and present compound national assessments presented here (Barrett et al., 2002; Best Foot Forward, 2002). This paper discusses the method's most recent compound accounts. Complementary papers discuss analytical options, show applications and discuss limitations and potential for improvement (Wackernagel et al., 2004a,b). Possibilities for applying Input-Output models to Footprinting are discussed in various papers including Lenzen et al. (2005) and Wiedmann et al (2005).

National Ecological Footprint Accounts

In order to provide a quantitative answer to the research question of how much regenerative capacity is required to maintain a given resource flow, Ecological Footprint accounts use a methodology grounded on six assumptions:

1. *The annual amounts of resources consumed and wastes generated by countries are tracked by national and international organizations.* These annual amounts can be measured in physical terms such as tonnes, joules or cubic meters. Most countries have extensive annual statistics documenting their resource use, particularly in the areas of energy, forest products and agricultural products. United Nations agencies, like the Food and Agriculture Organization (FAO), compile many of these national statistics in a consistent format. Annual aggregation of consumption and production data make them compatible with most other national statistics that are updated on a yearly basis and accommodate seasonal variations between countries. Consumption (or final demand) occurring within a specific country can be calculated by adjusting domestic production with international trade.

2. *The quantity of biological resources appropriated for human use is directly related to the amount of bioproductive land area necessary for regeneration and the assimilation of waste.* Bioproducive processes are associated with surfaces that capture sunlight for photosynthesis. Even three-dimensional processes that represent layers of such surfaces, as in aquatic ecosystems or rainforests, can be mapped on the two-dimensional area represented by the ‘ideal spherical surface of the planet.”

3. *By weighting each area in proportion to its usable biomass productivity (that is, its potential annual production of usable biomass), the different areas can be expressed in terms of a standardized average productive hectare.* These standardized hectares, called ‘global
hectares’, represent hectares with the potential to produce usable biomass equal to the
world’s potential average of that year. Usable refers to the portion of biomass that can be
renewably harvested and is valuable to people, reflecting the anthropocentric perspective of
the Ecological Footprint accounts. This standardization is applied both to people’s ecological
demand (Ecological Footprint) as well as to the supply of biological capacity (Biocapacity).

4. The overall demand in global hectares can be aggregated by adding all mutually exclusive
resource-providing and waste-assimilating areas required to support the demand. This
means that none of the services or resource flows included in the Ecological Footprint
accounts are provided on the same piece of land or sea space, ensuring that all areas are
added only once to the Ecological Footprint. Otherwise double-counting would inflate the
estimation of overall demand. Contrary to some misinterpretations of the Ecological
Footprint, this does not imply that areas are unable to provide a number of services
simultaneously, or that the accounts are built on such an assumption. Ecological Footprint
accounts merely document to what extent one human use of nature excludes other human
uses of nature. The activities and resource uses captured in the accounts are called ‘primary
functions’. If an area provides timber but also, as a secondary function, collects water for
agricultural irrigation, the Ecological Footprint only includes timber use, the primary
function. In cases of double cropping, the increased productivity of the cropped land is
reflected by a larger yield factor (see below).

5. Aggregate human demand (Ecological Footprint) and nature’s supply (Biocapacity) can be
directly compared to each other. Both use standardized hectares to measure aspects of
natural capital—the demand on natural capital versus the ability of natural capital to meet the
demand. Hence, the component and aggregate areas are commensurable.

6. Area demand can exceed area supply. A Footprint greater than total Biocapacity indicates
that demands exceed the regenerative capacity of existing natural capital. For example, the
products from a forest harvested at twice its regeneration rate have a Footprint twice the size
of the forest. We call the amount of overuse “ecological deficit”. Ecological deficits are
compensated in two ways: either the deficit is balanced through imports, resulting in
“ecological trade deficit” or, as in this forest product example, the deficit is met through the
overuse of domestic resources, leading to natural capital depletion (“ecological overshoot”).

Data Sources

The national Ecological Footprint accounts use economic and biophysical data published
primarily by international statistical and scientific agencies. Data gaps in these statistics are filled
with research from governmental, non-profit, academic, and private sector sources.

Complete national Ecological Footprint accounts depend on comprehensive and reliable data
sources on a global scale. By basing current accounts primarily on official data sources, they
document what the ecological implications would be if the source data were correct. As a
consequence, like other measures that draw on data from official statistics lacking information
about the margin of error of the underlying data, the margin of error of national Ecological
Footprint accounts cannot be quantified. Section V of this paper summarizes in qualitative terms
errors that affect the accuracy of the results. There is value in interpreting official data since it synthesizes this information and gives governments the opportunity to get more accurate results as they make better data available. Future research will contrast these accounts with accounts built on independent data, resulting in more transparency and the possibility to analyze the accuracy and/or precision of the data.

The impetus for the initial comprehensive revisions of the Ecological Footprint accounts was the release of the ‘Food Balance Sheets’ by FAOSTAT, an online, electronic database of international statistics published by the UN Food and Agriculture Organization. This standardized database documenting production, import and export data in a common accounting framework replaced manual data entry from disparate printed materials used in earlier accounts, greatly increasing the reliability of input and expanding the number of data points of the calculations. Also, they enabled more reliable Ecological Footprint analysis from the perspectives of trade and production, in addition to consumption, particularly since some of the new data sources also distinguish changes in stocks, production, waste and secondary uses.

The Account Components

The accounts are divided into two parts: the ecological supply (or bioproductive areas) and the demand on nature (or Ecological Footprint). This section explains the components of both. These components include the definition of bioproductive areas and their conversion from unweighted hectares to standardized global hectares through the use of equivalence and yield factors (Figure 1).

Bioproductive Areas

Globally we identify 11.2 billion hectares of distinct bioproductive areas—cropland, forest, pasture, fisheries, and built-up land—that provide economically useful concentrations of renewable resources. These 11.2 billion hectares cover a little under one quarter of the planet and include 2.3 billion hectares of marine and inland fisheries and 8.8 billion hectares of land. The land area is comprised of 1.5 billion hectares of cropland, 3.5 billion hectares of grazing land, 3.6 billion hectares of forest, and an additional 0.2 billion hectares of built-up land assumed to occupy potential cropland (EEA, 2000; FAO, 2000; SEI, 1998; WRI, 2000). These areas concentrate the bulk of the biosphere’s regenerative capacity. We have not yet been able to estimate how much of the total usable annual biomass generation (NBP or Net Biosphere Production) is concentrated on these 11.2 billion hectares, but would be surprised if it were less
than 80 to 90 percent. While the remaining areas of the planet are also biologically active, such as the deep oceans or deserts, their renewable resources are not concentrated enough to be a significant addition to the overall Biocapacity.

The Common Unit: Global Hectare
Ecological Footprint accounts express the use of built-up areas, and the consumption of energy and renewable resources—crops, animal products, timber, and fish—in standardized units of biologically productive area, termed global hectares (gha). Each global hectare represents an equal amount of biological productivity.

One global hectare is equal to one hectare with a productivity equal to the average productivity of the 11.2 billion bioproductive hectares on Earth. Here productivity does not refer to a rate of biomass production, such as net primary production (NPP). Rather productivity is the potential to achieve maximum agricultural production at a specific level of inputs (see next section). Thus one hectare of highly productive land is equal to more global hectares than one hectare of less productive land. Global hectares are normalized so that the number of actual hectares of bioproductive land and sea on this planet is equal to the number of global hectares on this planet.
Fig. 1. Structure of Footprint and Biocapacity Calculations. This scheme summarizes how the Ecological Footprint translates net consumption and bioproductive areas into areas of global average productivity. For simplification, this scheme excludes secondary products and nuclear power.
Global hectares allow for the meaningful comparison of the Ecological Footprints and the Biocapacities of different countries, which use and have different qualities and mixes of cropland, grazing land, and forest. Two conversion factors—equivalence factors (constant for all countries for a given year) and yield factors (specific for each country and each year)—translate each of the biologically productive areas from hectares into global hectares.

Fig. 2. Quantity of global hectares and actual hectares by category. Globally, the number of unadjusted hectares and the number of global hectares of bioproductive space are identical. The hectares for each type of bioproductive area are converted into global hectares by weighting their productivity against the world average productivity. This conversion is calculated using equivalence factors (capturing the productivity difference among land-use categories) and yield factors (capturing the difference between local and global average productivity within a given land-use category).

Equivalence factors

Equivalence factors represent the world’s average potential productivity of a given bioproductive area relative to the world average potential productivity of all bioproductive areas. Cropland, for example, is more productive than rangeland or pasture, and so has a larger equivalence factor than pasture. The equivalence factors for 2001 are listed in Table 1.

The equivalence factors for cropland, forest, pasture, and built-up area are derived from the suitability index of *Global Agro-Ecological Zones (GAEZ) 2000*, a spatial model of potential agricultural yields (IIASA and FAO, 2000). *GAEZ* maps the suitability of agricultural production by optimising crop varieties with data on soil type, growing season, slope, temperature, and precipitation to a global grid. The GAEZ model assigns a “Suitability Index”, or measure of potential agricultural productivity, to each grid cell. The National Accounts model calculates an area weighted average suitability Index (SI) for primary and marginal cropland, pasture, and forest, as well as a weighted average SI for all land use types. The equivalence factor is the ratio of the specific land use SI to the average SI. Normalizing with the area weighted SI sets the
number of global hectares equal to the number of physical hectares of bioproductive space, as shown in Fig. 2.

Ecological Footprint accounts value fisheries according to their capacity to supply animal protein relative to that of grassland.

The equivalence factor describes the potential crop yields attainable in an area with an assumed level of inputs such as water and fertilizer, regardless of current management practices or rates of biomass production (IIASA and FAO, 2000). Once again, as used here, potential productivity differs from measures of ecosystem productivity such as net primary productivity (NPP) in that it describes the land’s inherent ability to support agricultural production, and therefore human populations. Building the accounts on potentially usable productivity has a number of advantages. Focusing on ‘usable’ productivity allows us to contrast amounts of consumption and production in more precise terms. For instance, the amount of roundwood harvested as well as the amount of roundwood available for harvest can be measured far more accurately than removed or compromised NPP, which would need to encompass all biomass, including undergrowth, bark, leaves and sub-soil plant parts. Using the land’s ‘potential’ productivity at a specified level of technical inputs makes equivalence factors more robust over time, whereas equivalence factors based on actual productivity shift markedly with changes in the intensiveness of agriculture over time, making the interpretation of time series difficult.

Table 1: Equivalence Factors (2001)

<table>
<thead>
<tr>
<th>Bioproductive area</th>
<th>global hectares/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland (overall)</td>
<td>2.1</td>
</tr>
<tr>
<td>Primary</td>
<td>2.2</td>
</tr>
<tr>
<td>Marginal</td>
<td>1.8</td>
</tr>
<tr>
<td>Pasture</td>
<td>0.5</td>
</tr>
<tr>
<td>Forest</td>
<td>1.4</td>
</tr>
<tr>
<td>Fisheries</td>
<td>0.4</td>
</tr>
<tr>
<td>Built-up area</td>
<td>2.2*</td>
</tr>
<tr>
<td>Hydropower area</td>
<td>1.0</td>
</tr>
<tr>
<td>Fossil Fuels (Forest)</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* Note that built-up area is assumed to be located mostly on prime agricultural land. Hence built-up area has the same equivalence factor as primary cropland. For more explanations see Sec. IV in the text.

Yield factors
Yield factors (Table 2) describe the extent to which a biologically productive area in a given country is more (or less) productive than the global average of the same bioproductive area. Each country has its own set of yield factors, one for each type of bioproductive area. Each year
the yield factor is calculated anew. Specifically, the yield factor is the ratio between the area a country uses in the production of all goods in a given category—i.e. timber from forests, forage from pastures, etc.—calculated with national yields, and the area that would be required to produce the same goods with world average yields. For example, the Peruvian yield factor for cropland is the ratio between Peruvian and world average cropland yields. While Peru’s Primary Cropland is less slightly less productive than the world average productivity, the Marginal Cropland was more productive than average, because of unusually productive olive farming. The yield factor reflects prevailing technology and management practices, in addition to the inherent renewable resource productivity of a country. In other words, a country’s agricultural output per hectare is dependent upon soil fertility as well as harvest methods. For each country, the yield factor reflects the national average, which can vary dramatically, particularly in countries stretching over a vast number of climate zones such as Canada or Chile. For local analyses with a higher resolution, yield factors would have to be calculated for each locale.

Table 2: Peruvian Yield Factors (2001)

<table>
<thead>
<tr>
<th>Bioproductive Area</th>
<th>Equivalence Factor [gha/ha]</th>
<th>Yield Factor [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Cropland</td>
<td>2.19</td>
<td>0.98</td>
</tr>
<tr>
<td>Marginal Cropland</td>
<td>1.80</td>
<td>2.57</td>
</tr>
<tr>
<td>Forest</td>
<td>1.37</td>
<td>0.82</td>
</tr>
<tr>
<td>Forest AWS</td>
<td>1.37</td>
<td>0.50</td>
</tr>
<tr>
<td>Forest NAWS</td>
<td>1.37</td>
<td>0.81</td>
</tr>
<tr>
<td>Permanent Pasture</td>
<td>0.48</td>
<td>1.81</td>
</tr>
<tr>
<td>Marine</td>
<td>0.36</td>
<td>3.39</td>
</tr>
<tr>
<td>Inland Water</td>
<td>0.36</td>
<td>2.96</td>
</tr>
<tr>
<td>Built</td>
<td>2.19</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Calculation of the Footprint

Crop production, grazing, forestry, fisheries, and built-up areas provide for mutually exclusive demands on the biosphere, the sum of which equals the total Ecological Footprint. Each of these categories represents an area in hectares, which is then multiplied by its equivalence factor to obtain the Footprint in global hectares (Figure 1):

\[
\text{Footprint (gha) = Area (ha) * Equivalence Factor (gha/ha)}
\]

Consumption, Production, and Trade

National accounts distinguish products produced within a country from products consumed by a country. Production includes all domestically produced goods, regardless of their final destination. The final Footprint, however, documents consumption, which is calculated by
adding imports to, and subtracting exports from, domestic production (net consumption = domestic production + imports – exports).

If country A exports one ton of mutton to country B, the Footprint of feed, pasture, and energy required to produce this ton of mutton is deducted from country A and added to country B to determine the Footprint of consumption. Despite these adjustments for trade, some consumption activities, such as tourism, are attributed to the country where they occur, or where planes are fueled, rather than to the travelers’ countries of origin. This distorts the relative size of some countries’ footprints, but does not affect the global result. For want of more accurate data, worldwide airplane and ship bunker fuels are added as a “tax” on all countries relative to their total energy consumption.

Footprint of Renewable Resources

Cropland, pasture, forests, and fisheries encompass global ecosystems that supply the human economy with the bulk of its biologically renewable resources. The Footprint calculation for each of these areas is the sum of the footprints of all products consumed within that category. The Footprint of cropland, for example, includes cereals for human consumption, cotton, processed oils, and fodder crops for livestock.

Primary Products

Primary products describe the unprocessed output of a given area, which may be used directly with minimal alteration or be processed into a secondary product. In the case of cropland, pasture and forest, this includes the immediate products of photosynthesis, such as raw fruits and vegetables, forage for livestock, or unprocessed roundwood. For fisheries, the primary products are unprocessed fish, harvested from marine and inland fisheries. The Footprint of these products represents the biological and technical capacity required for their production standardized to the average global yield:

\[
\text{Area (ha)} = \frac{\text{[Production + Imports – Exports (tons)]}}{\text{Global yield (tons/ha)}}
\]

Secondary Products

Secondary products are goods derived from primary products, including meat and milk, paper, and farmed fish. Table 3 provides a few examples of primary and secondary products. While the Ecological Footprint of a primary product is calculated from the global yield, the Footprint of a secondary product equals the Footprint of its parent primary product. In other words, the part of the Ecological Footprint of a primary product that is used for manufacturing a secondary product (e.g., cereals for pork meat or roundwood for paper) is shifted to the secondary (or daughter) product. While a primary product will have an identical Footprint regardless of its origin, the Footprint of a secondary product changes according to the conversion efficiency of a country. The Footprint of a secondary product is only added to the total Footprint of consumption when traded; the Footprint of a secondary good that is produced but not traded is included in the processing Footprint of its parent product.
Table 3: Examples of primary and secondary products

<table>
<thead>
<tr>
<th>Component</th>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cropland</td>
<td>Maize</td>
<td>Maize germ oil</td>
</tr>
<tr>
<td></td>
<td>Sunflower seed</td>
<td>Sunflower seed oil</td>
</tr>
<tr>
<td></td>
<td>Alfalfa</td>
<td>Alfalfa raised beef</td>
</tr>
<tr>
<td>Pasture</td>
<td>Forage</td>
<td>Milk</td>
</tr>
<tr>
<td>Forest</td>
<td>Roundwood</td>
<td>Sawnwood</td>
</tr>
<tr>
<td></td>
<td>Fuelwood</td>
<td>none</td>
</tr>
<tr>
<td>Fisheries</td>
<td>Codfish</td>
<td>Cod liver oil</td>
</tr>
<tr>
<td></td>
<td>Pelagic fish</td>
<td>Salmon from aquaculture (since such fish is fed with primary fish catch)</td>
</tr>
</tbody>
</table>

Note that the Ecological Footprint accounts only include the area demand of these primary and secondary products, not other potential effects on future loss of bioproductivity. If future bioproductivity will indeed decline, this will affect biocapacity estimates of future years. Ideally, Footprint estimates should also include the area demand of agricultural side effects such as water pollution from intensive animal farming, but in current accounts, these aspects are missing for lack of data. This is one reason why our estimates of demand on nature probably under represent the real demand.

Imports of secondary products use the global conversion factor, and domestically produced secondary products use the national conversion factor. The area of exports is weighted in proportion to the amount of products imported and produced domestically and their respective conversion factors:

\[
\text{Area of Imports}_{\text{secondary}} (\text{ha}) = \text{Imports}_{\text{secondary}} (\text{tons}) \times \text{Global Conversion Efficiency} \times \left(\frac{\text{tons}_{\text{primary}}}{\text{tons}_{\text{secondary}}} \right) / \text{Global yield}_{\text{primary}} (\text{tons/ha})
\]

\[
\text{Area of Production}_{\text{secondary}} (\text{ha}) = \text{Production}_{\text{secondary}} (\text{tons}) \times \text{National Conversion Efficiency} \times \left(\frac{\text{tons}_{\text{primary}}}{\text{tons}_{\text{secondary}}} \right) / \text{Global yield}_{\text{primary}} (\text{tons/ha})
\]

\[
\text{Area of Exports}_{\text{secondary}} (\text{ha}) = \text{Exports}_{\text{secondary}} (\text{tons}) \times \left[\left(\frac{\text{Area of Imports}_{\text{secondary}} (\text{ha}) + \text{Area of Production}_{\text{secondary}} (\text{ha})}{\text{Imports}_{\text{secondary}} (\text{tons}) + \text{Production}_{\text{secondary}} (\text{tons})} \right) \right]
\]

Footprint of Built-up Area and Hydropower
The Ecological Footprint assumes that human settlement and infrastructure most often occupy agriculturally fertile regions. Some of the settlement area is paved over; other areas are still bioproductive such as gardens or parks. The Footprint includes those areas in terms of their foregone agricultural productivity. Hence, built-up area equals the same amount of cropland it replaces, adjusted for its productivity using the yield factor of cropland:
Footprint\textsubscript{built-up} (gha) = Area\textsubscript{built-up} (ha) * Equivalence Factor\textsubscript{built-up} (gha/ha) * Yield Factor\textsubscript{cropland} (-)

Due to high variation in the productivity of land inundated by hydropower reservoirs and the lack of data documenting their distribution, this area receives a world average equivalence factor of 1.0 (and a yield factor of 1.0). Because hydroelectricity consumption is better documented than reservoir area, a constant conversion factor converts energy use into area:

Footprint\textsubscript{hydro area} (gha) = Energy (GJ) / constant (GJ/ha) * Equivalence Factor\textsubscript{hydro area} (gha/ha)

The assumed ratio of energy produced per hectare inundated is taken as an average of the world’s 20 largest dams (WWF, 2000). For especially mountainous countries using hydropower, such as Switzerland and Norway, we reduce this footprint tenfold. This reduction reflects the fact that high-elevation hydro power in mountains require less inundated area per GJ, plus they are typically located on not as productive land as in the case of low-elevation river dams (for instance the Three Gorges is covering highly productive, and relatively flat agricultural land. We use the grazing equivalence factor for high elevation hydropower.

\textit{Footprint of Fossil Fuels and Nuclear Energy}

While the Footprints of crops, forest products, animal products and fish are calculated in a straightforward way, the Footprint of fossil fuels and nuclear energy can be estimated from a number of different perspectives. The research question ‘how much regenerative capacity is required to maintain the throughput of fossil fuel through the human economy?’ can be addressed, for instance, from a maintenance of natural capital perspective or a waste perspective. The latter addresses the additional capacity the biosphere would need to either accommodate the waste, assuming that the supply of fossil fuel is far less limiting than the biosphere’s ability to cope with the waste. We refer to this latter approach as the area required for waste assimilation. In contrast, the former approach examines the capacity needed to replace the consumed energy by supplying a biomass substitute. Below is a description of the two calculation methods.

\textit{Waste Assimilation}

The CO\textsubscript{2} sequestration Footprint estimates the additional biologically productive area needed to sequester atmospheric CO\textsubscript{2} through afforestation. The sequestration area is calculated by deducting the approximately one-third of anthropogenic emissions absorbed by the oceans from the total anthropogenic emissions (IPCC, 2001).

\[
\text{Area (ha)} = \frac{\text{CO}_2 \text{ Emissions (tons)} \times (1 - \text{fraction absorbed by ocean})}{\text{Sequestration Rate (tons/ha)}}
\]

This approach does not imply that CO\textsubscript{2} sequestration is the solution to climate change. Rather, it illustrates how much larger the world would need to be in order to cope with anthropogenic CO\textsubscript{2} emissions. In doing so, it defines the prerequisite land area of CO\textsubscript{2} sequestration schemes, since the potential for biological sequestration is limited in space (amount of area available for afforestation) as well as time (planted forests are net sinks for the few decades before they mature and lose their absorptive capacity (House et al., 2002).
CO₂ emissions data were obtained from various sources, including CDIAC (1999) and IEA (2001).

Biomass Substitution
The biomass substitution approach calculates the area needed to replace fossil fuels with their energy equivalent in fuelwood. Fuelwood is chosen as the default replacement as it has been the historically dominant fuel for most societies and the primary fuel the biosphere supplies without human modification. Alternative biofuels with lower space requirements (such as ethanol fuel) are possible but do not occur without active human intervention and industrial processes. Obviously, if higher-yield alternatives were used, they would replace fuelwood and reduce the Footprint accordingly. The rate of fuelwood production equals the growth rate of roundwood multiplied by an expansion factor to account for additional biomass used for fuel (limbs, small trees, etc.):

\[
\text{Area (ha)} = \frac{\text{Energy (GJ)}}{[\text{Roundwood yield (GJ/ha)} \times \text{Expansion Factor (-)}]}
\]

If forests are managed for fuelwood, higher yields can be achieved which would also reduce the Footprint.

Nuclear Energy
The prevalence of nuclear power in some nations draws attention to its role in international metrics of demand on natural capital. The nuclear component differs from the other parts of the Footprint in that it produces wastes for which the biosphere has minimal, if any, assimilative capacity. While they are not designed to release their waste, the fact is that some have (Chernobyl), and the problem of safe, long-term waste storage remains unresolved. One could argue that, similar to PCBs, nuclear power should not be included in Footprint accounts to keep them logically consistent, since these toxic or radioactive substances rest entirely outside the Ecological Footprint’s framework of a quantifiable land area required for waste assimilation. Its exclusion, of course, would not imply that nuclear power is without environmental impacts; rather, it would merely recognize the fact that nuclear waste is fundamentally different from wastes such as CO₂ which are easily assimilated by biological processes.

But this omission could also be (mis)interpreted as a higher ecological performance of countries with nuclear power. We chose for our current Ecological Footprint accounts to include nuclear power as if it were fossil fuel. In the long term it is likely that use of these substances should be phased out if humanity does not want to run the risk of increasing the concentration of these toxic or radioactive substances in the biosphere. Accepting the economic necessity and ecological precaution leading to the eventual replacement of nuclear power with a sustainable alternative, the current energy infrastructure makes fossil fuels their most likely replacement. (The accounts provide users with the option to exclude the nuclear Footprint from the results). Other methods of quantifying nuclear energy’s Footprint are conceivable too. For example, it may be possible to quantify the area put at risk by accidental release into the environment by estimates of historical precedent. Or, it could be argued that the Ecological Footprint documents the actual bioproductive area occupied at a given point in time, and that the Footprint of a nuclear accident should be incorporated when it occurs, eliminating the need for a risk-based assessment.

Embodied Energy and Embodied Resources in Trade

In order to determine a nation's Footprint of consumption, its domestic production Footprint must be adjusted for the resources and waste it imports and exports. To avoid double counting the accounts track primary resource flows, adjusted for trade in both primary and secondary resources. Traded secondary resources are translated back into the primary resources embodied in these goods and services. These amounts then are used to adjust the primary resource flows in countries.

The accounts track resource trade in two ways. Primary resources (e.g. wheat, lumber, fishmeal) are tracked directly in the accounts, based on FAOSTAT data. FAOSTAT data is used because it reports production, imports, and exports in consistent units (wet weight, with or without bones, etc.). Resources embodied in traded products, such as the leather and grain feed embodied in a pair of imported shoes, or the electricity embodied in an imported automobile, are tracked separately using data from the UN Statistical Department COMTRADE global trade database. These embodied resources are then added to the trade flows of the primary resources.

Embodied energy figures are averages taken from a number of sources from the energy intensity literature, and from a database of embodied energy estimates maintained by Stockholm Environment Institute (Stockholm Environment Institute – York). The embodied energy figures used are exposed in the accounts. In our current accounts, products have the same embodied energy regardless of the country of manufacture. Energy is translated into CO$_2$ emissions using the national fuel mix profile of the producing country for exports, and using the world average fuel mix for imports.

Calculation of Biocapacity

Biocapacity, or the supply side of the equation, is the counterpart of the Footprint, or the demand side. A nation’s total Biocapacity is the sum of its bioproductive areas, also expressed in global hectares (gha) (Fig. 1). We transform each bioproductive area into global hectares by multiplying its area by the appropriate equivalence factor and the yield factor specific to that country:

\[
\text{Biocapacity (gha)} = \text{Area (ha)} \times \text{Equivalence Factor (gha/ha)} \times \text{Yield Factor (-)}
\]

The Biocapacity captures the entire bioproductive area to which that nation has exclusive claim and represents the maximum theoretical rate of resource supply that can be sustained on its territory under prevailing technology and management schemes. This contains all bioproductive areas to which that country has exclusive claim, including regions that are not utilized due to geography, economics, conservation or other reasons. Given adequate information, however, the Biocapacity of each bioproductive area may be divided into accessible and inaccessible sub-regions. Each sub-region may have differing yield factors, as the most productive areas are generally the most likely candidates for settlement and resource extraction. Recent data on the percentage of forests in inaccessible and protected areas already make sub-regional Biocapacity assessments possible (FAO 2000a; FAO and UNECE, 2000). The Footprint of activities in one locale can then be compared with its respective bioproductive area to evaluate the extent to which the activity can be sustained within its own borders and with its own local resources.
Assuming the mutual exclusivity of national Biocapacities and the claim of all bioproductive areas within national territories, the global Biocapacity equals the sum of all national Biocapacities. The global Biocapacity can also be expressed as follows:

$$\sum P_i \times E_i = A$$

Where P is the actual, physical hectares of bioproductive area, E is the equivalence factor for each area of type i, and A is global Biocapacity expressed in standardized hectares.

Ecological Deficit and Ecological Overshoot

A comparison of the Footprint and Biocapacity reveals whether existing natural capital is sufficient to support consumption and production patterns. A country whose Footprint exceeds its Biocapacity runs what we term an ecological deficit. The condition of ecological deficit is possible in two ways: imports of Biocapacity from other nations (ecological trade deficit) and/or the liquidation of natural capital (ecological overshoot). We define the amount of ecological deficit (from the perspective of consumption) in global hectares as:

$$\text{Ecological deficit (gha)} = \text{Footprint (gha)} - \text{Biocapacity (gha)}$$

If a country has an ecological remainder (a negative ecological deficit)—i.e., holds more Biocapacity than Footprint, and therefore has no ecological deficit—this remaining unused Biocapacity may still be used for providing services that are consumed in other countries. If these services were sold to a second country, then the corresponding demand on the first country’s Biocapacity would be part of this first country’s production Footprint, as well as part of the second country’s Ecological Footprint of consumption.

Countries with low per capita Biocapacities, which typically result from high population densities (such as Bangladesh, the Netherlands) or inhospitable climates (Ethiopia, Saudi Arabia), do not have the capacity to meet their resource demand, and import food and timber from countries with agricultural, fishery, or timber remainders, such as Canada or Brazil. Subtracting the Footprint of production from the Footprint of consumption yields the ecological trade deficit if positive, or the net export of biological capacity if negative:

$$\text{Ecological trade deficit (gha)} = \text{Footprint}_{\text{consumption (gha)}} - \text{Footprint}_{\text{production (gha)}}$$

Or equivalently

$$\text{Ecological trade deficit (gha)} = \text{Footprint}_{\text{imports (gha)}} - \text{Footprint}_{\text{exports (gha)}}$$

Ecological deficits not balanced through trade are met through the overuse of domestic resources, resulting in overgrazed pastures, depleted fisheries, degraded forests, and the accumulation of carbon emissions in the global atmosphere. This phenomenon, termed ecological overshoot, is a state in which biological resources are used more rapidly than the biosphere can replenish them or assimilate their waste, thereby breaching the principle of strong
sustainability. Domestic ecological overshoot equals the Footprint of production minus the Biocapacity.

Ecological overshoot (g ha) = Footprint_{production} (g ha) - Biocapacity (g ha)

It is possible, although unlikely, for a country to run a negative ecological trade deficit (remainder) while in a state of ecological overshoot. In such a situation the country would literally be liquidating natural capital to service exports. A global ecological deficit always means ecological overshoot, since there is no other planet from which to import. However, an absence of ecological deficits (at the global, national or local level) does not necessarily indicate truly sustainable resource management, since local overuse can still lead to local overshoot or other systematic overuse of natural capital.

It is crucial to note that the Biocapacity represents the theoretical maximum resource capacity for a given year. While ecological overshoot by definition reveals the degradation of natural capital, the ecological remainder does not guarantee the sustainability of production practices. Rather, as the Footprint of production approaches the Biocapacity and the ecological remainder narrows, the likelihood that the country will experience environmental stress or degradation escalates, at least over longer periods of time.

In other words, a decreasing ecological remainder ratchets pressures on ecosystems, increasing the need to examine environmental maladies omitted by Ecological Footprint accounts, such as biodiversity loss or water pollution. This does not mean that biological conservation is hopeless in the face of high human pressures. Examples are subtropical, arid places such as karstic Mediterranean landscapes where high conservation values can be achieved in the presence of ‘traditional’ low input agriculture (Wrbka, personal communication). But with more pressure, conservation efforts become more difficult. An ecological overshoot equal to zero provides no margin of error and will only avoid resource degradation under perfect management schemes and absence of any other pressures not included in Ecological Footprint accounts.

IV. DESCRIPTION OF BIOPRODUCTIVE AREAS AND DATA SOURCES

Cropland

The accounts include over 70 crops and 15 secondary products, and the quantity of each product allocated to feed, seed, food, waste, processing, and non-food uses. In addition to imports and exports, the cropland accounts record national stock changes.

The FAO estimates that cropland covers roughly 1.5 billion hectares worldwide, of which approximately 1.3 billion hectares are harvested. Unharvested cropland covers 0.2 billion hectares and includes temporary pasture, failed or unreaped harvests, temporarily fallow land, and shoulders, shelterbelts, and other uncultivated patches (FAO, 1999).

Cultivated cropland comprises primary and marginal cropland, which receive separate equivalence factors to reflect different land qualities and crops. Marginal crops include sorghum, millet, olives, and fodder grasses, such as alfalfa and clover cultivated for silage. We introduced
these categories recognizing that some crop areas have inherently lower productivities and the choice of agricultural technology does not explain the low yields. Without introducing a marginal crop area category, a hectare with average millet or average olive yield would be counted as equal to a hectare of average potato or average rape seed yield. Note that the crops in this marginal category are not homogeneous either. Some uses such as intensive fodder cultivation may put significant pressure on local biodiversity, while olive trees may add ecological benefits to the area through shading and water and soil retention.

The accounts measure the area occupied by cropland to the exclusion of other land uses but do not document degradation from agricultural practices, such as long-term damage from topsoil erosion, salinization, aquifer depletion, and nitrogen runoff. The energy embodied in agricultural inputs—fertilizer, pesticide, mechanization—is captured in the Footprint.

Forest

Roundwood and fuelwood constitute the primary products of the forest Footprint. Fuelwood includes charcoal, while roundwood, or rough lumber in its felled state, is subsequently processed into four commodities: sawn wood, wood-based panels, paper and paperboard, and wood pulp.

According to FAO (2000a), 3.8 billion hectares of forest exist worldwide. The World Resources Institute and others have critiqued the report for overstating the health of global forests and underestimating deforestation rates. Hence we consider this dataset to be an underestimate of forest pressures, leading to overestimates of the forest sector’s size and CO2 assimilative capacity. This report, as well as FAO and UNECE (2000) and IPCC (1997), provide information on plantation type, coverage, national timber yield, and areas of protected and economically inaccessible forest. For data on bark removal, timber removals of dead trees and felled but unharvested trees, consider country-specific logging practices.

Our mechanistic assessment of the forest ignores additional pressures on forests which would become apparent in a more detailed analysis. For example, soil impacts from planting exotic tree species, the sensitivity of forests to pathogen outbreak or storm damage and other factors could affect the long-term productivity of forests. If and when these effects occur, they will reduce the measured Biocapacity of the forests.

Pasture

Grazing animals for meat, hides, wool, and milk requires grassland and pasture area. Worldwide, FAO (2001) estimates there are 3.5 billion hectares of natural and semi-natural grassland and pasture. It was assumed that 100 per cent of pasture is utilized, unless pasture produces more than twice the feed requirement necessary for the grass-fed livestock. In this latter case, pasture demand is counted at twice the minimum area requirement. This may lead to underestimating pasture demand since even in low productivity grasslands, people usually allow grazing animals full range and thus create human demand on the entire available grassland. It may be more
accurate to assume that all pasture areas are fully occupied—following the “law of ecology” that ‘all niches are filled.’ We cap the pasture Footprint at twice the minimum Footprint to make sure human demand is not exaggerated in the current Footprint accounts. As a result, biocapacity figures in current accounts for countries with large grazing areas compared to the pasture production Footprint may show too large a biocapacity for their grasslands. For instance, there is indication that in reality, Australia’s grassland is used to capacity. Contrary to the results our accounts generate, Australian grassland may be worth only 1.9 global hectares per Australian (the production Footprint of grassland), rather than the 8.3 reported in our accounts.4

Diet profiles are created to determine the mix of cultivated food, cultivated grasses, fish products, and grazed grasses consumed by animals in each country. Each source of animal food is charged to the respective account (crop feed to the cropland footprint, fish- based feed to the fishing ground footprint, etc.). The embodied cropland and pasture is used with FAO trade data (FAO 2001) to move animal product footprints and charge the consuming country.

Further, the dividing line between forest areas and grasslands is not sharp. For instance, FAO has included areas with 10 per cent of tree cover in the forest categories, while in reality they may be primarily grazed. While the relative distribution between forest and grassland areas may not be accurate, the accounts are constructed to ensure no area is counted as more than one type of land.

One aspect of the methodology requiring further research is assessing forage supply and demand. Poor data is one obstacle; another is significant use of crop residues and other complementary crops not listed in the FAO statistics. These might include household scraps, garden by-products, or plants growing along paths, roads or unclaimed common areas. We see the weakness in grass and pastureland data as a particularly worrying oversight in country’s attempts to measure and manage their natural resources.

Fisheries

The accounts reference eight categories of fish and aquatic animals and one category of aquatic plants. These nine categories subsume an additional forty-two species groups, each possessing an average bycatch, or discard rate, and trophic level used to calculate the demand on nature represented by the catch of one unit of each species.

Higher trophic level fish consume a far greater portion of the primary productivity of the oceans than lower trophic level fish – roughly 10 times per trophic level (Pauly and Christensen, 1995). Where the earliest Footprint accounts calculated the fish Footprint solely in proportion to the tonnage of fish, they now calculate it as a function of tonnage and trophic level. Thus, a ton of cod at trophic level four has a Footprint 10 times greater than a ton of sardines at trophic level three.

\[
\text{Yield (kg/ha)} = \text{Max. PPR (kg/ha)} \times (\text{Transfer Efficiency} \wedge (1-\text{TL})) \times \text{Yield Factor (-)} / \text{Discard Rate (-)}
\]

The maximum PPR, or primary production requirement, equals the maximum equivalent net primary production that can be harvested; TL equals the trophic level of the catch; and transfer
efficiency represents the biomass transferred between trophic levels at a default transfer efficiency of 10% (Pauly and Christensen, 1995). While actual transfer efficiencies may deviate from this typical default value of 10 percent, this number does not affect the global Footprint but only the relative Footprint associated with given species. For instance, assuming a lower transfer efficiency would increase the fish Footprint of those nations who eat higher on the fish food-chain.

The majority of the marine fish catch occurs on the continental shelves. Excluding inaccessible or unproductive waters, these comprise 2.0 billion hectares. Although a mere fraction of the ocean’s 36.3 billion hectares, these 2.0 billion hectares provide over 95 percent of the marine fish catch (Pauly and Christensen, 1995; Sharp, 1988; WRI, 2000). Inland waters add another 0.3 billion hectares, making for 2.3 billion hectares of potential fisheries out of the 36.6 billion hectares of ocean and inland water that exist on the planet (FAO, 1999). FAO fish catch figures are compared with FAO’s sustainable yield figure of 93 million tons per year (FAO, 1997). The fish Footprint assumes an additional bycatch according to the species composition of national fish catches.

Earlier accounts based fishing areas on national Exclusive Economic Zones (EEZ). For lack of data, they assumed all areas equally productive. The productivity of national waters is now estimated by fish catch potential in 26 continental shelf zones (Sharp, 1988). Inland water and continental shelf area have replaced the EEZ to obtain a far more accurate distribution of global fishing capacity. The diminished fishing area—from 3.1 billion to 2.3 billion hectares—consequently reduces the global Footprint and Biocapacity, introducing the largest source of change into the accounts. The reduced Biocapacity, however, does not indicate a reduction in global productivity but only a concentration of the same productivity in a smaller region.

One revision made in the 2004 Edition affects the Footprint of fishmeal. Countries with large fishing industries (and big export of fish products) were showing too large of a fish Footprint since some of the fish waste of the processing was assumed to be “consumed by households in the country” rather than being a by-product of fish processing. This approach led to an unreasonably high allocation of the fish production Footprint to the exporting country. The major change we have introduced to address this problem is to consider fishmeal to be a waste product, rather than one being on par with high-quality fish. Now fishmeal is only counted at a placeholder 20% of the former Footprint per kilogram of product.

We anticipate putting further work into the fish Footprint in future account updates. This will require getting better data and improving our understanding of the fish processing side. Understanding the origin of fish products (i.e., what exactly goes into fishmeal) can significantly affect the fish Footprint since the accounts are sensitive to the trophic level on the food-chain (i.e., a mackerel which is one food chain level below the tuna, has a Footprint 10 times smaller per kg than the tuna.)

Infrastructure

Infrastructure for housing, transportation, industrial production, and capturing hydroelectricity occupies built-up land. This area is the least well-documented, since low-resolution satellite
images are not able to capture dispersed infrastructure and roads. Data from Eurostat (2000) and SEI (1998) suggest a global total of 0.3 billion hectares of built-up land. The accounts assume that built-up land replaces arable land, as most human settlements are located in fertile areas. Hydroelectricity consumption data were obtained from British Petroleum (2004).

The 2004 Edition (and subsequent editions) account use several new land use data sources. For EU countries we have fully incorporated EU EEA CORINE satellite land use data. This dataset is the European standard for describing land cover. We use three other global land use databases (SEI 1998, JRC/GVM GLC 2000, FAO GAEZ 1998) which provide a more accurate and robust sets of data regarding built-up land in non European countries. We have also begun maintaining an in-house database of land use inventories collected from national statistical bureaus and equivalent offices. These inventories are generally more accurate, and are used in preference to other data when available.

V. RELIABILITY AND VALIDITY OF ECOLOGICAL FOOTPRINT ACCOUNT

As for any other scientific measurement tool, the results need to be scrutinized on their reliability and validity. This question is statistically challenging to answer. The reason is that the accounts aggregate a vast array of data. Worse, it is data that is not delivered with error bars or any statistical description of significance and reliability.

To minimize data inaccuracies or calculation errors that might distort the Ecological Footprint accounts, we have numerous quality assurance procedures. They include comparing sum of all countries to world as a whole in over 36 categories, and checking time trends of all components of all countries for internal and external consistency. Further, we have constructed the accounts to err on the side of overreporting biocapacity and underreporting Ecological Footprints. In other words, overshoot and ecological deficits we report are most likely smaller than actual overshoot and deficits. Based on the many cases where we err on the side of overreporting biocapacity and underreporting Ecological Footprints, we believe it is unlikely that accounting errors will reverse the conservative bias of the accounts.

The accounts are distorted by six potential types of errors:

1. **Conceptual and methodological errors.** These include:
 a) *systematic errors in assessing the overall demand on nature.* Some demands, such as freshwater consumption, soil erosion and toxic release are excluded or incompletely covered in the calculations. This typically leads to underestimates of ecological deficit.
 b) *allocational errors.* Incomplete or inaccurate trade and tourism data may distort the distribution of the global Footprint among producing and consuming nations. This means, for example, that the consumption of a Swedish tourist to Mexico may be allocated to Mexico rather than Sweden. However, this does not affect the estimate of humanity’s overall demand on nature.
2. **Structural and data entry errors in the calculation sheets.** Error detecting algorithms, the modular architecture of the calculation sheets, automatic cross-checks or tests for outliers in data time series and other techniques are used to identify and correct these potential errors. Minor errors are more difficult to detect, but also have minimal impact on the reliability of the accounts.

3. **Erroneous assumptions for estimating missing data.** Estimating data gaps is limited to only one minor section, and in this section to less than a quarter of the items: the embodied energy in trade. National estimates are based on global value, with any error only affecting the Footprint allocation among countries. We expect the maximum distortion – the case of a small, trade-intensive country – to be less than 5 percent of its total Footprint. Further research is needed to analyze this potential misallocation among countries.

4. **Data errors in statistical sources for one particular year.** Errors in printed or electronically published data can be spotted by comparison with similar data reported for other years. With our improved ability to automate comparisons across time and across nations, significant errors in this category are largely eliminated as they are detected by looking at time trends. Smaller errors of this kind may still exist in calculations, but they do not affect overall results.

5. **Systematic misrepresentation of reported data in UN statistics.** Distortions may arise from over-reported production in planned economies, under-reported timber harvests on public land, poorly funded statistical offices, and subsistence, black market, and non-market (or informal) activities. Since most consumption occurs in the affluent regions of the world, these data weaknesses may not distort the global picture significantly. Still, we have found cases where data reported by national agency does not match data reported by UN – and we have not been able to reconcile. Typically we stick with UN data due to its international comparability.

6. **Systematic omission of data in UN statistics.** There are demands on nature that are significant but are not, or are not adequately, documented in UN statistics. Examples include data on the biological impact of water scarcity or pollution, and the impact of waste on bioproductivity. Including these aspects would increase the Footprint size.

Some of the above-identified distortions generate margins of error on both sides of the data point. Overall, though, there is a great likelihood that those errors leading to an under-reporting of the global ecological overshoot overshadow the other errors.

With every round of improvement in the accounts, the use of more comprehensive data sets and independent data sources, the consistency and reliability of data can be checked more effectively, and the robustness of our calculations improves. The accounts are updated every year, and methodologically refined.

There is no doubt that Ecological Footprint accounts and their data sources have improved significantly since 1990, as the additional electronic data were added to the accounts and systematic internal cross-checking and dataset correspondence checks have been introduced.
Complementary papers (Wackernagel et al., 2004a,b,c,d, 2005) show applications of these national accounts, and discuss how they can be used for comparisons over time, what gaps still exist, and what improvements can be expected in future enhancements of the accounting methodology. Latest national time trends are provided on Global Footprint Network’s website at www.footprintnetwork.org.

VI. COMPARISON TO OTHER RELATED METHODS

The most recent Ecological Footprint accounts (building on Wackernagel et al., 1997, 1999, and 2002a,b) incorporate comprehensive data sources and were strengthened by exposure to a number of other approaches. Alternative approaches to the fossil fuel Footprint include the area required to provide renewable energy mix (Ferguson, 1999; Ferguson et al., 2001) and the area required to maintain fossil energy stocks in the lithosphere (Stöglehner, 2003). The publications of Haberl et al. (2001) and van Vuuren et al. (1999) helped refine the potential distortions and confusions arising from the use of ‘global hectares.’ We sharpened the way they are calculated, basing the equivalence factors on inherent agricultural suitability instead of actual biomass production (IIASA and FAO, 2000). We also concluded that actual, unweighted hectares are useful for mapping the physical extension of human demands, but that global hectares are necessary to capture a population’s demand on, and a region’s supply for, Biocapacity in a consistent and globally comparable way (Wackernagel et al., 2004a,b).

Van Vuuren et al. (1999) also showed a way to link a country’s demand to its area of origin, making demands geographically explicit. With the limited data presently available, only some parts of a nation’s Footprint accounts could be expanded to document country-specific trade. By tracing resources to their origins, rather than merely distinguishing domestic production from imported production, the accounts would become far more voluminous. As computers’ computational capacity increases and more detailed bilateral trade statistics become accessible, future accounts may trace trade between specific countries. (Erb, 2004).

The studies of Lenzen and Murray (2001) as well as Luck et al. (2001) have examined ways to make the Biocapacity aspects of the accounts more sensitive to local ecological conditions. Luck establishes a method to compare urban Footprints directly to the Biocapacity surrounding the city. Lenzen and Murray advocate the need to capture the quality of the impact, in addition to its quantity. Since assessing the quality of impact is more speculative and depends on predictions about future productivity, current accounts focus only on the exclusive use of area, thereby maintaining a conservative estimation of overshoot. However, Lenzen and others’ approach to use Input Output models for more accurately allocating Footprint areas to final consumption is a promising development.

Inspired by the Ecological Footprint, the Wildlife Conservation Society and the Center for International Earth Science Information Network (CIESIN) launched a project to capture the human dominance on the planet (Sanderson et al., 2002). Their innovative mapping project captures the extent of the human presence on the planet, concluding that 83% of the terrestrial surface as under direct human influence. This includes regions with appreciable levels of land
conversion, population density, electrical power infrastructure, and access by roads, rivers, and coastlines. Moreover, this same level of influence extends over 98% of the land able to support rice, wheat, and maize, the world’s most vital food crops. Since this project does not measure overuse of areas, it cannot measure overshoot, but it does illustrate spatially where human activities dominate the global landscape.

In a similar study using a less permissive definition of human influence, researchers working with the non-profit organization Conservation International found that wilderness areas still cover 46% of the world’s land area. The reason this result differs significantly from the 17% reported in the human footprint study by Sanderson et al. (2002) is Conservation International’s more lenient exclusion criteria. In contrast to the human footprint, which categorizes ecosystems as “under human influence” where anthropogenic factors form an important ecological force, Conservation International’s report, *Wilderness: Earth’s Last Wild Places*, documents regions that retain at least 70% of their original vegetation, cover no fewer than 10,000 square kilometers, and have fewer than five people per square kilometer. These wilderness areas, at the margins of human influence, provide conservation opportunities that protect large areas at minimal cost. Regardless of the actual number linking human activity to global land area, it can be argued that any definition of “land under human influence” is arbitrary. Thus efforts have been made to identify a reasonable and useful definition. One measure, the human appropriation of net primary productivity (HANPP), has the ability to evaluate the intensity of human use of ecosystems. A comparison of this measure’s approach to Ecological Footprint accounts is discussed in detail in Haberl et al. (2004).

Although the fact that vast wilderness areas still exist seems to contradict the conclusions of the Ecological Footprint and Sanderson et al. (2002), a closer inspection of global land use data corroborates all three studies. While 46% of the land surface denoted as wilderness certainly harbors a diversity of life and aesthetic value, it consists to a significant extent of photosynthetically unproductive regions like Antarctica, Greenland, the far reaches of the tundra, and vast dry regions like the Sahara and Australian Deserts. From a natural capital perspective, these regions produce a far smaller share of the planet’s capacity to produce the basic sustenance of society—food, fiber, timber—in addition to limited capacity to sequester carbon. In fact, the Ecological Footprint classifies 36% of the Earth’s terrestrial surface as unproductive (and hence barely occupied by human activities)—a figure that approximates Conservation International’s assessment of wild areas. But this difference between 46% and 36% also points out that there are some wild and protected areas in highly productive ecosystems, and there exist effective strategies to secure biodiversity conservation that is economically viable and provides protective stewardship to these productive (and hence attractive) ecosystems. Low-intensity or traditional farming such as crofting systems in Scotland or mountain peasantry in the Alps are among the European examples that are now increasingly supported by governmental conservation programs (Wrabka, personal communication, 2003).

VII. CONCLUSION

The Ecological Footprint tracks core requirements for ‘strong’ sustainability and identifies priority areas for ‘weak’ sustainability. Its premise is simple: How much area does the human
economy need to provide ecological goods and services? How much area does the planet provide us to do so? If the required area exceeds the available capacity, overuse of natural capital ensues, thereby violating the principle of strong sustainability. At the same time, ecological overshoot identifies the liquidation of natural capital, which requires a human-made substitute to preserve the criterion of weak sustainability.

Applied globally, national Ecological Footprint accounts reveal ecological overshoot on the grossest of scales; applied nationally, they describe the sources and sites of overshoot and the liability of national ecological deficits.

The latest iteration of these natural capital accounts provides a level of detail never reached before. This permits current Ecological Footprint accounts to calculate time trends, not just for economic sectors or particular resources, but also for trade relationships between countries. Possible applications are discussed in the follow-up papers published in this issue (Wackernagel et al., 2004a,b).

Complementary measures of societal health and environmental quality (such as the Human Development Index (UNDP 2004) or others discussed in Wrbka et al., 2004), however, are needed to develop a fuller picture of sustainability. The focus on biophysical flows lends the Ecological Footprint strength as a metric of ecological sustainability and indicator of distributional justice issues, but Footprinting avoids the flip side of human well-being. These aspects should, and need to be, tracked with separate measures. We would warn against combining these distinct aspects of sustainability into one single index. In fact, the Ecological Footprint’s strength is in avoiding the conflation of human demand on the biosphere with other ecological issues such as chemical contamination, or with measures of social well-being and social sustainability. There are many important parameters for building a sustainable world, each of which need to be illuminated separately since there is no magic formula that defines ‘optimal trade-offs’ among them. For sustainability, we need to achieve both ecological health as well as social well-being, and achieving one at the expense of the other is inherently unsustainable.

Ecological Footprint accounts measure the area required to supply resources and assimilate waste without compromising the ability of those areas to continue to provide services. However, the accounts only approximate the demand on nature with several inherent limitations. One limitation is their targeted research question that excludes some aspects that would commonly be associated with impact. For instance, the accounts do not describe the intensity of land use, biodiversity loss, or activities that impoverish the ability of an area to keep providing ecological goods and services, such as freshwater pollution from nitrogen runoff. Furthermore, the accounts exclude degradation associated with uncertain analysis or poor data, such as the long-term effect of soil erosion on crop yields. Because of the nature of any accounting, it also contains potential errors as identified in this paper, but we do not see them as a major threat to the validity and reliability of the overall results.

In fact, due to the accounts’ systematic bias to underestimate Footprints and overestimate Biocapacity, there is a strong case for the claim that ecological overshoot as identified by these natural capital accounts is occurring, and that it is most likely larger than the results document. Thus, the Ecological Footprint is also a warning mechanism and a tool to both advance the
discussion about ecological limits among scientists, policy-makers, and the public, and to frame
the public debate on how to best use nature’s ‘ecological budget’ to secure the well-being of
people and nature alike.

References

http://www.bp.com/centres/energy/

CDIAC, 1999. Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture. Oak Ridge,
Tennessee, Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center (CDIAC),
http://cdiac.esd.ornl.gov

EEA JRC/GVM 2000 - EU Joint Research Center, Global Vegetation Monitoring Unit. 2000. Global Land
Classification Database (GLC2000). European Commission, Brussels, Belgium.

Eurostat, 2000. Towards Environmental Pressure Indicators for the EU. Luxembourg, Eurostat, European
Commission.

1, 149-156.

(FAO), Fisheries Department.

FAO, 2000a.. Forest Resource Assessment 2000. Rome, Food and Agriculture Organization (FAO), Forestry
Department.

FAO, 2002. FISHSTAT Plus CD-ROM. Rome, Food and Agriculture Organization (FAO), Fisheries Department.

Organization (FAO) and United Nations Economic Commission for Europe (UNECE).

Lenzen, Manfred, Mathis Wackernagel, Diana Deumling, Bonnie Lauck, 2005. The Ecological Footprint of Victoria, ISA University of Sydney, Global Footprint Network, EPA Victoria.

Wackernagel, M., Chris Martiniak, Fred Wellington, Chad Monfreda, Steve Goldfinger, 2004d, “Does a Nation’s Ecological Performance Affect its Economic Stability? The potential for enhancing sovereign credit risk

Wiedmann, Thomas, Jan Minx, John Barrett, Mathis Wackernagel, 2005, Allocating Ecological Footprints to Final Consumption Categories with Input-Output Analysis.” accepted by Ecological Economics.

Notes:

1 The development of this earlier paper was funded by the Austrian Federal Ministry of Education, Science and Culture in the research programme ‘Kulturlandschaftsforschung’ (Cultural Landscapes Research, http://www.klf.at). The study was part of the project ‘Land use change and socio-economic metabolism: a long-term perspective’ (http://www.iff.ac.at/socec/affil/ihdp/htm/fslucnet.htm) formally endorsed by the ‘Land-Use and Cover Change’ (LUCC) project jointly sponsored by the IGBP and the IHDP. Most of the paper was written during a time when the researchers worked at Redefining Progress.

ii ‘Mutually exclusive hectares’ means that for ecological services provided by the same hectare, this hectare would be counted only once. Otherwise, areas would be double counted, and Footprint result would exaggerate the area demand for ecological services.

iii Resource and waste flows, for example many chemicals, that cannot be measured in these terms are not taken into account by these assessments.

4 DEH’s State of Environment Reporting (http://www.deh.gov.au/soe/2001/land/land01-4.html) provides an assessment of the grazing animal density in the Extensive Land-use Zone. In essence, it reports that historically these pastures were overstocked in the 1970s – with massive vegetation loss and erosion. In the early 1990s, two reports on the ecological sustainability of the rangelands both identified widespread vegetational degradation and other ecological changes, such as extensive weed invasion, rill and gully features, soil salinisation, and bare scald extension linked to overgrazing. Recent surveys (e.g. ABARE 1999) suggest that the higher-productivity regions of the central and eastern rangelands are still being used unsustainably, with consequent continuation of vegetation and land degradation. Fluctuations in sheep density have been substantial (decreases) and cattle low but seem market related rather than sustainability related (communicated by Bonnie Lauck Sept 30, 2004)

5 Preliminary research indicates that for the United Kingdom, a popular tourism destination, foreign tourists may account for up to 5% of the country’s total Footprint. (personal communication with John Barrett, SEI.)